1. Новые покупки

    25.11.2017: [ЧК-FREE] Греби тонны трафика из вк [ОЧЕНЬ ЛЕГКО И БЫСТРО]

    24.11.2017: Система автоматической прибыли через интернет на постоянной основе

    24.11.2017: Jonn22 Мастер-класс "Социальный капитал и его монетизация"

    24.11.2017: Партнёрский конвейер на Avito

    24.11.2017: Евгений Дорохин (Jonn22): Быстрые деньги с Avito и социальных сетей 7 поток

    24.11.2017: Курс по рекламе в Facebook Джона Лумера (Пиксель, Ремаркетинг, Трафик, Конверсии) - Часть 1,2,3,4

    24.11.2017: Семантическое проектирование сайта

    24.11.2017: Обучение настройке таргетированной рекламы ВКонтакте, Facebook, MyTarget 16 поток - (Алексей Князев)

    24.11.2017: Покупаем Турбо пакеты на Авито со скидкой до 80% + Приват фишки, Бонусы [Zennoposter], Турбо Продажи

    24.11.2017: Супер Титры в Premiere Pro CC

    24.11.2017: Самый полный курс по продвижению на YouTube (2017)

    24.11.2017: Как стать видеоблоггером - от автора Дневник Хача - Практический курс по запуску блога на YouTube

    24.11.2017: [ЧК-FREE] 10 млн E-mail адресов клиентов интернет магазинов одежды

    24.11.2017: [AIC, Skillbox, tagline] три дизайн-курса в одном - UX-дизайн, UX-аналитика, UI-анимация

    24.11.2017: Криптовалюты. Pro

    23.11.2017: Обучение торговли криптовалютами

    23.11.2017: Онлайн тренинг директологов от Константина Горбунова (11-й поток)

    23.11.2017: Курс по Facebook

    23.11.2017: Личные Facebook-Продажи 4.0

    23.11.2017: Самый полный курс по раскрутке в инстаграм Убойный инстапакет 2.0

    23.11.2017: Самый полный курс по рекламе в myTarget (2017)

    23.11.2017: [Masterclass] Werner Herzog Teaches Filmmaking [ENG-RUS]

    23.11.2017: Амазон-1000 (третий марафон) - AmazonSales КУРС О РАБОТЕ С ПАРТНЕРКОЙ АМАЗОН

    23.11.2017: SalesHub - Бизнес на Amazon: Перезагрузка (Интенсив) 2017

    23.11.2017: Amazon FBA Arbitrage/ Dropshipping Coaching Courses Andrei Kreicbergs

Схемы заработка

Складчины

Инфопродукты

На сайте доступно более 35.000 инфопродуктов, схем заработка и складчин

Как мы тестируем рекламные технологии Яндекса, и как этому научиться

Тема в разделе "Статьи/Новости IT", создана пользователем Toretto, 18 фев 2014.

  1. Toretto

    Администратор

    Регистрация:
    13 янв 2014
    Сообщения:
    6.006
    Симпатии:
    5.199
    Меня зовут Константин Власов, и я руковожу в Яндексе службой управления качеством баннерной системы. Как вы можете догадываться, тестирование быстроменяющейся системы таких масштабов, как наши рекламные технологии, со всеми базами данных, репликацией компонент, протоколами взаимодействия между подсистемами, а также при довольно частых релизах, — непростое дело. При этом тестировать все нужно очень тщательно, ведь любая ошибка потенциально может принести серьезный ущерб бизнесу компании. И речь тут идет не только о репутационных издержках, но и о потере реальных денег.
    [​IMG]

    Сегодня я хочу рассказать об этом чуть подробнее, а тех, кому станет интересно, позову научиться тестировать такие комплексные системы и попробовать все это на практике.

    Начнем, конечно же, с рассказа о том, что мы тестируем. В Яндексе есть два рекламных направления: контекстная и медийная реклама.

    Контекстная реклама – это текстовые объявления, которые вы наверняка видели в поисковой выдаче и на сайтах, входящих в рекламную сеть Яндекса, медийная — это флеш, гиф, видео реклама.

    Казалось бы, ничего сложного: показал рекламу, списал деньги с рекламодателей и все. Но рынок рекламных технологий устроен так, что показывать пользователям случайную рекламу — невыгодно. Рекламодатели хотят показывать рекламу именно тем пользователям, которым она действительно может оказаться полезной и интересной. Эффективность рекламного объявления напрямую зависит от его релевантности.

    Повышение релевантности — очень непростая задача, требующая наличия большого количества информации как о поведении самого пользователя, так и о многих других критериях. Поэтому наша баннерная система включает в себя кластеры машинного обучения, сложные алгоритмы ранжирования, огромные базы данных и сверхбыстрые веб-сервера, необходимые для моментальной передачи данных.

    [​IMG]

    Для персонализации медийной рекламы мы используем технологию Крипта. Это метод машинного обучения, который анализирует поведение каждого пользователя в сети Яндекса, что позволяет узнать социально-демографические характеристики пользователей: возраст, пол, образование, уровень дохода, интересы — несколько сотен параметров, на основании которых мы можем показывать рекламу, предположительно полезную конкретному пользователю. Для контекстной рекламы основную роль играет поисковый запрос, который пользователь только что ввел, а также история запросов. Также учитывается местоположение пользователя и время запроса.

    Каким образом происходит подбор объявлений для показа в каждом конкретном случае – тема отдельного рассказа. Некоторое представление об этом процессе можно составить излекции нашего коллеги Михаила Левина. Стоит лишь отметить, что в лекции приводится несколько упрощенная модель расчета вероятности показа того или иного объявления. На самом деле, помимо CTR (click-through rate) – отношения кликов к показам – в ранжировании участвует множество алгоритмов, учитывающих огромное количество факторов и коэффициентов, в генерации которых нам помогает технология машинного обучения Матрикснет.

    Важно понимать, что весь процесс генерации рекламных блоков должен происходить очень быстро — буквально несколько миллисекунд. Естественно, вся статистика просчитывается заранее. Однако все эти данные нужно быстро извлекать и пересылать между компонентами нашей системы. Для этого мы используем высокопроизводительный веб-сервер Phantom. И все это работает под нагрузкой, которую можно примерно сопоставить с нагрузкой на основной поиск Яндекса.

    Тестирование

    Тестируемая система – это набор веб-сервисов и множество скриптов, различные базы данных и интерфейсы, поэтому из-за многообразия компонентов мы делаем упор на автоматизацию тестирования. Фреймоворки для автоматизации тестирования мы создаем и поддерживаем сами. Основные языки разработки в нашей команде – Python, Perl.

    Мы постоянно экспериментируем, внедряем новые подходы и технологии: Model-based testing, Pairwise testing, Continuous Integration, Continuous Delivery и другие. Цель этих экспериментов — повысить нашу эффективность, оптимизируя процессы и инструменты.

    В тестировании быстроменяющейся системы таких масштабов, как наши рекламные технологии, со всеми базами данных, репликацией компонент, протоколами взаимодействия между подсистемами, а также при довольно частых релизах, никак не обойтись без сложной инфраструктуры и Continuous Integration (CI). Сейчас у нас реализован полный CI цикл с использованием Jenkins и OpenStack-облака.

    Нами также были разработаны несколько плагинов для Jenkins, а также использован универсальный инструмент для составления кастомных тестовых репортов Allure, любезно предоставленный нашими коллегами.

    Команда

    У нас нет классического разделения на тест-дизайнеров, разрабатывающих тест-кейсы, и автоматизаторов. В нашей работе много технической разработки, поэтому расти можно не только в части тестирования, но и в плане технологий. Все делается с одной единственной целью – предоставить пользователю качественный продукт. Работа достаточно стрессовая, поэтому мы стараемся создавать на рабочем месте приятную и веселую обстановку. У каждого есть свои предпочтения: спорт, музыка, видеоигры, настолки и т.д.

    Мы активно растем и развиваемся, и нашей команде нужны новые кадры, поэтому родилась идея создать Школу тестирования баннерной системы – двухмесячные курсы, которые смогут дать необходимые знания и навыки для работы в нашей команде.

    Обучение включает в себя не только теоретическую часть, но и практику, заключающуюся в решении задач, похожих на боевые. Читать лекции и вести практические занятия будут специалисты из нашей команды. Студентам, продемонстрировавшим успехи в процессе обучения, будет предложено пройти стажировку в Яндексе. Но даже если вы не ставите перед собой цели устраиваться на работу в Яндекс, наша школа – это отличный шанс научиться тестированию непосредственно у людей, которые развивают эту область. Наш курс можно разделить на несколько тем:

    • процесс разработки и тестирования ПО;
    • работа с системами контроля версий;
    • работа с базами данных;
    • анализ требований и проектирование тестов;
    • написание тестовой документации;
    • разработка автоматизированных тестов и целесообразность автоматизации;
    • командная работа и эффективное взаимодействие.
    Более подробная информация доступна

    Что бы видеть скрытые ссылки нужно зарегистрироваться в клубе складчин COGA.BIZ или стать Членом Клуба

    , там же можно оформить заявку на зачисление. Набор продлится до 19:00 21 февраля.
     
  2. Toretto

    Администратор

    Регистрация:
    13 янв 2014
    Сообщения:
    6.006
    Симпатии:
    5.199
    Основной список:


























     
XenForo add-ons by Waindigo™ ©2014 Waindigo Foundation.